Nowadays the interest in active networks is significant as a result of to the larger penetration of renewable energy sources connected to the grid. In this scenario, multilevel power converters and, in particular, Cascaded H-Bridge converters allow the required flexibility and reliability to be considered as a building block for active nodes for the future electrical grid. The control of the power converters is a key factor to obtain the desired performance in terms of grid current THD and reliability under fault conditions. In this paper two promising model based control techniques, respectively Dead-Beat and Predictive control, are compared under non-ideal conditions in order to evaluate control performance. © 2013 IEEE.
A comparison between dead-beat and predictive control for a 7-level back-to-back Cascaded H-Bridge under fault conditions
Zanchetta P.
;
2013-01-01
Abstract
Nowadays the interest in active networks is significant as a result of to the larger penetration of renewable energy sources connected to the grid. In this scenario, multilevel power converters and, in particular, Cascaded H-Bridge converters allow the required flexibility and reliability to be considered as a building block for active nodes for the future electrical grid. The control of the power converters is a key factor to obtain the desired performance in terms of grid current THD and reliability under fault conditions. In this paper two promising model based control techniques, respectively Dead-Beat and Predictive control, are compared under non-ideal conditions in order to evaluate control performance. © 2013 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.