This paper proposes a model predictive speed control of a permanent magnet synchronous machine (PMSM). The control scheme has a cascade architecture, where the inner loop uses a finite set model predictive control scheme (FS-MPC) for the electrical subsystem, and the outer loop uses a dead-beat model predictive control for the mechanical subsystem. Due to the discrete nature of the control platform an accurate discrete model of the systems is necessary. In this work both systems, electrical and mechanical, are discretizated with a second order Taylor method. Simulation results are presented to validate the proposed control strategy. © 2016 IEEE.

Cascaded model predictive speed control of a permanent magnet synchronous machine

Zanchetta P.
2016-01-01

Abstract

This paper proposes a model predictive speed control of a permanent magnet synchronous machine (PMSM). The control scheme has a cascade architecture, where the inner loop uses a finite set model predictive control scheme (FS-MPC) for the electrical subsystem, and the outer loop uses a dead-beat model predictive control for the mechanical subsystem. Due to the discrete nature of the control platform an accurate discrete model of the systems is necessary. In this work both systems, electrical and mechanical, are discretizated with a second order Taylor method. Simulation results are presented to validate the proposed control strategy. © 2016 IEEE.
2016
9781509034741
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1372896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact