This paper presents the development and validation of a fast, accurate, and high dimensional Multiphysics analytical model for the optimization-based design of fractional-slot surface permanent magnet (PM) machines. The approach is non-iterative and high dimensional, i.e. considers a high number of input parameters. The resulting model takes an average of 0.03 seconds to run on a standard PC, and its accuracy is verified by both Finite Element (FE) analysis and experimental tests. Due to its accuracy and speed, the model can be easily integrated within a design optimization environment. © 2019 IEEE.

Fast and Accurate Model for Optimization-based Design of Fractional-Slot Surface PM Machines

Zanchetta P.
;
2019

Abstract

This paper presents the development and validation of a fast, accurate, and high dimensional Multiphysics analytical model for the optimization-based design of fractional-slot surface permanent magnet (PM) machines. The approach is non-iterative and high dimensional, i.e. considers a high number of input parameters. The resulting model takes an average of 0.03 seconds to run on a standard PC, and its accuracy is verified by both Finite Element (FE) analysis and experimental tests. Due to its accuracy and speed, the model can be easily integrated within a design optimization environment. © 2019 IEEE.
9781728133980
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/1372948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact