FLUKA is a Monte-Carlo code able to simulate interaction and transport of hadrons, heavy ions and electromagnetic particles from few keV (or thermal neutron) to cosmic ray energies in whichever material. The highest priority in the design and development of the code has always been the implementation and improvement of sound and modern physical models. A summary of the FLUKA physical models is given, while recent developments are described in detail: among the others, extensions of the intermediate energy hadronic interaction generator, refinements in photon cross sections and interaction models, analytical on-line evolution of radio-activation and remnant dose. In particular, new developments in the nucleus–nucleus interaction models are discussed. Comparisons with experimental data and examples of applications of relevance for space radiation are also provided.
The physics of the FLUKA code: recent developments
BALLARINI, FRANCESCA;MAIRANI, ANDREA;OTTOLENGHI, ANDREA DAVIDE;SCANNICCHIO, DOMENICO;TROVATI, STEFANIA;
2007-01-01
Abstract
FLUKA is a Monte-Carlo code able to simulate interaction and transport of hadrons, heavy ions and electromagnetic particles from few keV (or thermal neutron) to cosmic ray energies in whichever material. The highest priority in the design and development of the code has always been the implementation and improvement of sound and modern physical models. A summary of the FLUKA physical models is given, while recent developments are described in detail: among the others, extensions of the intermediate energy hadronic interaction generator, refinements in photon cross sections and interaction models, analytical on-line evolution of radio-activation and remnant dose. In particular, new developments in the nucleus–nucleus interaction models are discussed. Comparisons with experimental data and examples of applications of relevance for space radiation are also provided.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.