We present a memory-efficient quantum algorithm implementing the action of an artificial neuron according to a binary-valued model of the classical perceptron. The algorithm, tested on noisy IBM-Q superconducting real quantum processors, succeeds in elementary classification and image-recognition tasks through a hybrid quantum-classical training procedure. Here we also show that this model is amenable to be extended to a multilayered artificial neural network, which is able to solve a task that would be impossible to a single one of its constituent artificial neurons, thus laying the basis for a fully quantum artificial intelligence algorithm run on noisy intermediate-scale quantum hardware.

An quantum algorithm for feedforward neural networks tested on existing quantum hardware

Gerace D.;MacChiavello C.;Bajoni D.
2020-01-01

Abstract

We present a memory-efficient quantum algorithm implementing the action of an artificial neuron according to a binary-valued model of the classical perceptron. The algorithm, tested on noisy IBM-Q superconducting real quantum processors, succeeds in elementary classification and image-recognition tasks through a hybrid quantum-classical training procedure. Here we also show that this model is amenable to be extended to a multilayered artificial neural network, which is able to solve a task that would be impossible to a single one of its constituent artificial neurons, thus laying the basis for a fully quantum artificial intelligence algorithm run on noisy intermediate-scale quantum hardware.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1387294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact