Background: The aging phenotype in humans is very heterogeneous and can be described as a complex mosaic resulting from the interaction of a variety of environmental, stochastic and genetic-epigenetic variables. Therefore, each old person must be considered as a singleton, and consequently the definition of 'aging phenotype' is very difficult. Objective: We discuss the phenotype of centenarians, the best example of successful aging, as well as other models exploited to study human aging and longevity, such as families enriched in long-living subjects, twins and cohorts of unrelated subjects. Methods: A critical review of literature available until March 2008. Conclusions: No single model can be considered the gold standard for the study of aging and longevity, instead the combination of results obtained from different models must be considered in order to better understand these complex phenomena. We propose that a systems biology concept such as that of 'bow-tie' architecture useful for managing information flow, could help in this demanding task. © 2008 Informa UK Ltd.

Human models of aging and longevity

Lescai F.;
2008-01-01

Abstract

Background: The aging phenotype in humans is very heterogeneous and can be described as a complex mosaic resulting from the interaction of a variety of environmental, stochastic and genetic-epigenetic variables. Therefore, each old person must be considered as a singleton, and consequently the definition of 'aging phenotype' is very difficult. Objective: We discuss the phenotype of centenarians, the best example of successful aging, as well as other models exploited to study human aging and longevity, such as families enriched in long-living subjects, twins and cohorts of unrelated subjects. Methods: A critical review of literature available until March 2008. Conclusions: No single model can be considered the gold standard for the study of aging and longevity, instead the combination of results obtained from different models must be considered in order to better understand these complex phenomena. We propose that a systems biology concept such as that of 'bow-tie' architecture useful for managing information flow, could help in this demanding task. © 2008 Informa UK Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1400514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 120
social impact