Automatic monitoring of daily living activities can greatly improve the possibility of living autonomously for frail individuals. Pose recognition based on skeleton tracking data is promising for identifying dangerous situations and trigger external intervention or other alarms, while avoiding privacy issues and the need for patient compliance. Here we present the benefits of pre-processing Kinect-recorded skeleton data to limit the several errors produced by the system when the subject is not in ideal tracking conditions. The accuracy of our two hidden layers MLP classifier improved from about 82% to over 92% in recognizing actors in four different poses: standing, sitting, lying and dangerous sitting.

Skeleton data pre-processing for human pose recognition using Neural Network

Guerra B. M. V.;Ramat S.;Gandolfi R.;Beltrami G.;Schmid M.
2020-01-01

Abstract

Automatic monitoring of daily living activities can greatly improve the possibility of living autonomously for frail individuals. Pose recognition based on skeleton tracking data is promising for identifying dangerous situations and trigger external intervention or other alarms, while avoiding privacy issues and the need for patient compliance. Here we present the benefits of pre-processing Kinect-recorded skeleton data to limit the several errors produced by the system when the subject is not in ideal tracking conditions. The accuracy of our two hidden layers MLP classifier improved from about 82% to over 92% in recognizing actors in four different poses: standing, sitting, lying and dangerous sitting.
2020
978-1-7281-1990-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1412797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact