Sugar Fatty Acid Esters (SFAEs) are a class of non-ionic surfactants that can be synthesized from inexpensive natural resources. Depending on carbon chain length and nature of the sugar head group, SFAEs cover a wide range of hydrophilic–lipophilic balance (HLB) values, which result in tunable tenside properties and in turn relevant for a wide variety of industrial applications. Three sugar-based surfactants (6-O-lauroyl-, 6-O-palmitoyl- and 6-O-stearoyl-1-O-butyl glucopyranosides) have been prepared by a lipase-catalyzed esterification of isomeric mixture of n-butyl glucosides. Specifically, their interfacial features together with W/O emulsifying properties and stability over time have been finely evaluated (interfacial tension (IFT) values, W/O emulsion turbidity water droplet size distribution, first order kinetic constants of de-emulsification).
Emulsifying properties of sugar-based surfactants prepared by chemoenzymatic synthesis
Marina Simona Robescu;Riccardo Semproli;Daniela Ubiali;
2022-01-01
Abstract
Sugar Fatty Acid Esters (SFAEs) are a class of non-ionic surfactants that can be synthesized from inexpensive natural resources. Depending on carbon chain length and nature of the sugar head group, SFAEs cover a wide range of hydrophilic–lipophilic balance (HLB) values, which result in tunable tenside properties and in turn relevant for a wide variety of industrial applications. Three sugar-based surfactants (6-O-lauroyl-, 6-O-palmitoyl- and 6-O-stearoyl-1-O-butyl glucopyranosides) have been prepared by a lipase-catalyzed esterification of isomeric mixture of n-butyl glucosides. Specifically, their interfacial features together with W/O emulsifying properties and stability over time have been finely evaluated (interfacial tension (IFT) values, W/O emulsion turbidity water droplet size distribution, first order kinetic constants of de-emulsification).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.