This paper describes the innovative experimental approach, introduced by the authors in the framework of the EU H2020 project LIFES50+, to perform scale model tests on floating offshore wind turbines (FOWTs). A 6-DOFs hardware-in-the-loop (HIL) system was designed and realized to reproduce the global FOWT response to wind and waves in the atmospheric boundary layer (ABL) of the Politecnico di Milano (PoliMi) wind tunnel. A 2-DOFs (surge and pitch) HIL system was used to perform preliminary tests, assessing the capabilities of the hybrid experimental methodology, and to gather data for the finalization of the 6-DOFs setup. Results from the first experimental campaign are discussed, showing the effect of aerodynamic loads on the coupled FOWT response.
Hybrid HIL Testing of Floating Wind Turbines Within LIFES50+ Project
Giberti H.;
2019-01-01
Abstract
This paper describes the innovative experimental approach, introduced by the authors in the framework of the EU H2020 project LIFES50+, to perform scale model tests on floating offshore wind turbines (FOWTs). A 6-DOFs hardware-in-the-loop (HIL) system was designed and realized to reproduce the global FOWT response to wind and waves in the atmospheric boundary layer (ABL) of the Politecnico di Milano (PoliMi) wind tunnel. A 2-DOFs (surge and pitch) HIL system was used to perform preliminary tests, assessing the capabilities of the hybrid experimental methodology, and to gather data for the finalization of the 6-DOFs setup. Results from the first experimental campaign are discussed, showing the effect of aerodynamic loads on the coupled FOWT response.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.