Background: Peptidase mitochondrial processing alpha (PMPCA) biallelic mutations cause a spectrum of disorders ranging from severe progressive multisystemic mitochondrial encephalopathy to a milder non-progressive cerebellar ataxia with or without intellectual disability. Recently, we and others described an intermediate phenotype in two unrelated patients. Methods: We report a second Italian patient carrying novel PMPCA variants (p.Trp278Leu; p.Arg362Gly). Molecular modeling, dynamics simulation, RT-qPCR, and Western blotting were performed to predict the pathogenic impact of variants in the two Italian patients and attempt genotype-phenotype correlates. Results: In line with the two patients with intermediate phenotypes, our case presented global psychomotor delay with regression, intellectual disability, spastic-ataxic gait, and hyperkinetic movements, with cerebellar atrophy and bilateral striatal hyperintensities. However, blood lactate, muscle biopsy, and MRI spectroscopy were normal. PMPCA protein levels were significantly higher than controls despite normal cDNA levels. Dynamics simulation of several PMPCA missense variants showed a variable impact on the flexibility of the glycine rich loop and, for some cases, on the overall protein stability, without clear genotype-phenotype correlates. Conclusion: We confirm the expansion of PMPCA phenotypic spectrum including an intermediate phenotype of progressive encephalopathy without systemic involvement. The association of cerebellar atrophy with “Leigh-like” striatal hyperintensities may represent a “red flag” for this condition.

Phenotypic definition and genotype-phenotype correlates in pmpca-related disease

Serpieri V.;Valente E. M.
2021-01-01

Abstract

Background: Peptidase mitochondrial processing alpha (PMPCA) biallelic mutations cause a spectrum of disorders ranging from severe progressive multisystemic mitochondrial encephalopathy to a milder non-progressive cerebellar ataxia with or without intellectual disability. Recently, we and others described an intermediate phenotype in two unrelated patients. Methods: We report a second Italian patient carrying novel PMPCA variants (p.Trp278Leu; p.Arg362Gly). Molecular modeling, dynamics simulation, RT-qPCR, and Western blotting were performed to predict the pathogenic impact of variants in the two Italian patients and attempt genotype-phenotype correlates. Results: In line with the two patients with intermediate phenotypes, our case presented global psychomotor delay with regression, intellectual disability, spastic-ataxic gait, and hyperkinetic movements, with cerebellar atrophy and bilateral striatal hyperintensities. However, blood lactate, muscle biopsy, and MRI spectroscopy were normal. PMPCA protein levels were significantly higher than controls despite normal cDNA levels. Dynamics simulation of several PMPCA missense variants showed a variable impact on the flexibility of the glycine rich loop and, for some cases, on the overall protein stability, without clear genotype-phenotype correlates. Conclusion: We confirm the expansion of PMPCA phenotypic spectrum including an intermediate phenotype of progressive encephalopathy without systemic involvement. The association of cerebellar atrophy with “Leigh-like” striatal hyperintensities may represent a “red flag” for this condition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1465555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact