In this paper we discuss spectral properties of operators associated with the least-squares finite-element approximation of elliptic partial differential equations. The convergence of the discrete eigenvalues and eigenfunctions towards the corresponding continuous eigenmodes is studied and analyzed with the help of appropriate $L^2$ error estimates. A priori and a posteriori estimates are proved.
First order least-squares formulations for eigenvalue problems
Bertrand F.;Boffi D.
2022-01-01
Abstract
In this paper we discuss spectral properties of operators associated with the least-squares finite-element approximation of elliptic partial differential equations. The convergence of the discrete eigenvalues and eigenfunctions towards the corresponding continuous eigenmodes is studied and analyzed with the help of appropriate $L^2$ error estimates. A priori and a posteriori estimates are proved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.