In this paper we discuss spectral properties of operators associated with the least-squares finite-element approximation of elliptic partial differential equations. The convergence of the discrete eigenvalues and eigenfunctions towards the corresponding continuous eigenmodes is studied and analyzed with the help of appropriate $L^2$ error estimates. A priori and a posteriori estimates are proved.

First order least-squares formulations for eigenvalue problems

Bertrand F.;Boffi D.
2022-01-01

Abstract

In this paper we discuss spectral properties of operators associated with the least-squares finite-element approximation of elliptic partial differential equations. The convergence of the discrete eigenvalues and eigenfunctions towards the corresponding continuous eigenmodes is studied and analyzed with the help of appropriate $L^2$ error estimates. A priori and a posteriori estimates are proved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1467300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact