BERTRAND, FLEURIANNE HERVELINE CECILE
BERTRAND, FLEURIANNE HERVELINE CECILE
DIPARTIMENTO DI MATEMATICA 'FELICE CASORATI'
A reduced order model for the finite element approximation of eigenvalue problems
2023-01-01 Bertrand, F.; Boffi, D.; Halim, A.
An Adaptive Finite Element Scheme for the Hellinger-Reissner Elasticity Mixed Eigenvalue Problem
2021-01-01 Bertrand, F.; Boffi, D.; Ma, R.
Approximation of the Maxwell eigenvalue problem in a least-squares setting[Formula presented]
2023-01-01 Bertrand, F.; Boffi, D.; Gastaldi, L.
Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem
2020-01-01 Bertrand, F.; Boffi, D.; Stenberg, R.
Convergence analysis of the scaled boundary finite element method for the Laplace equation
2021-01-01 Bertrand, F.; Boffi, D.; G. de Diego, G.
Discontinuous Petrov-Galerkin Approximation of Eigenvalue Problems
2023-01-01 Bertrand, F.; Boffi, D.; Schneider, H.
First order least-squares formulations for eigenvalue problems
2022-01-01 Bertrand, F.; Boffi, D.
Least-squares formulations for eigenvalue problems associated with linear elasticity
2021-01-01 Bertrand, F.; Boffi, D.
ON THE MATCHING OF EIGENSOLUTIONS TO PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS
2022-01-01 Alghamdi, M. M.; Bertrand, F.; Boffi, D.; Bonizzoni, F.; Halim, A.; Priyadarshi, G.
On the Spectrum of an Operator Associated with Least-Squares Finite Elements for Linear Elasticity
2022-01-01 Alzaben, L.; Bertrand, F.; Boffi, D.
On the spectrum of the finite element approximation of a three field formulation for linear elasticity
2022-01-01 Boffi, Daniele; Bertrand, FLEURIANNE HERVELINE CECILE
On the spectrum of the finite element approximation of a three field formulation for linear elasticity
2022-01-01 Alzaben, L.; Bertrand, F.; Boffi, D.
The Prager–Synge theorem in reconstruction based a posteriori error estimation
2020-01-01 Bertrand, Fleurianne; Boffi, Daniele