BERTRAND, FLEURIANNE HERVELINE CECILE

BERTRAND, FLEURIANNE HERVELINE CECILE  

DIPARTIMENTO DI MATEMATICA 'FELICE CASORATI'  

Mostra records
Risultati 1 - 13 di 13 (tempo di esecuzione: 0.019 secondi).
Titolo Data di pubblicazione Autore(i) File
A reduced order model for the finite element approximation of eigenvalue problems 1-gen-2023 Bertrand, F.; Boffi, D.; Halim, A.
An Adaptive Finite Element Scheme for the Hellinger-Reissner Elasticity Mixed Eigenvalue Problem 1-gen-2021 Bertrand, F.; Boffi, D.; Ma, R.
Approximation of the Maxwell eigenvalue problem in a least-squares setting[Formula presented] 1-gen-2023 Bertrand, F.; Boffi, D.; Gastaldi, L.
Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem 1-gen-2020 Bertrand, F.; Boffi, D.; Stenberg, R.
Convergence analysis of the scaled boundary finite element method for the Laplace equation 1-gen-2021 Bertrand, F.; Boffi, D.; G. de Diego, G.
Discontinuous Petrov-Galerkin Approximation of Eigenvalue Problems 1-gen-2023 Bertrand, F.; Boffi, D.; Schneider, H.
First order least-squares formulations for eigenvalue problems 1-gen-2022 Bertrand, F.; Boffi, D.
Least-squares formulations for eigenvalue problems associated with linear elasticity 1-gen-2021 Bertrand, F.; Boffi, D.
ON THE MATCHING OF EIGENSOLUTIONS TO PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS 1-gen-2022 Alghamdi, M. M.; Bertrand, F.; Boffi, D.; Bonizzoni, F.; Halim, A.; Priyadarshi, G.
On the Spectrum of an Operator Associated with Least-Squares Finite Elements for Linear Elasticity 1-gen-2022 Alzaben, L.; Bertrand, F.; Boffi, D.
On the spectrum of the finite element approximation of a three field formulation for linear elasticity 1-gen-2022 Alzaben, L.; Bertrand, F.; Boffi, D.
On the spectrum of the finite element approximation of a three field formulation for linear elasticity 1-gen-2022 Boffi, Daniele; Bertrand, FLEURIANNE HERVELINE CECILE
The Prager–Synge theorem in reconstruction based a posteriori error estimation 1-gen-2020 Bertrand, Fleurianne; Boffi, Daniele