The typical approaches to generate heralded single photons rely on parametric processes, with the advantage of generating highly entangled states at the price of a random pair emission. To overcome this limit, degenerate spontaneous Four-Wave-Mixing is a reliable technique which combines two pump photons into a pair of signal and idler photons via Kerr nonlinear optical effect. By exploiting the intrinsic small confinement volume and thermally tuning the resonances of a 20 μm-long Photonic Crystal cavity, we efficiently generate time-energy entangled photon pairs and heralded single photons at a large maximum on-chip rate of 22 MHz, using 36 μW of pump power. We measure time-energy entanglement with net visibility up to 96.6 % using 1 second integration time constant. Our measurements demonstrate the viability of Photonic Crystal cavities to act as an alternative and efficient photon pair source for quantum photonics.
Ultra-efficient generation of time-energy entangled photon pairs in an InGaP photonic crystal cavity
Barone A.;Bajoni D.;Galli M.;
2023-01-01
Abstract
The typical approaches to generate heralded single photons rely on parametric processes, with the advantage of generating highly entangled states at the price of a random pair emission. To overcome this limit, degenerate spontaneous Four-Wave-Mixing is a reliable technique which combines two pump photons into a pair of signal and idler photons via Kerr nonlinear optical effect. By exploiting the intrinsic small confinement volume and thermally tuning the resonances of a 20 μm-long Photonic Crystal cavity, we efficiently generate time-energy entangled photon pairs and heralded single photons at a large maximum on-chip rate of 22 MHz, using 36 μW of pump power. We measure time-energy entanglement with net visibility up to 96.6 % using 1 second integration time constant. Our measurements demonstrate the viability of Photonic Crystal cavities to act as an alternative and efficient photon pair source for quantum photonics.File | Dimensione | Formato | |
---|---|---|---|
s42005-023-01189-x.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.