The simplest, most cost-efficient, and most widespread Additive Manufacturing (AM) technology is Extrusion Additive Manufacturing (EAM). Usually, EAM is performed with filament feedstock, but using pellets instead of filaments yields many benefits, including significantly lower cost and a wider choice of materials. High-performance polymers offer high strength even when produced with AM technique, allowing to produce near-net-shape functional parts. The production of these materials in filament form is still limited and expensive; therefore, in this paper, the possibility of producing AM components with engineering polymers from pellets will be thoroughly investigated. In this work, the effectiveness of a specially designed AM machine for printing high-performance materials in pellet form was tested. The material chosen for the investigation is PEI 1000 which offers outstanding mechanical and thermal properties, giving the possibility to produce with EAM functional components. Sensitivity analyses have been carried out to define a process window in terms of thermal process parameters by observing different response variables. Using the process parameters in the specified range, the additive manufactured material has been mechanically tested, and its microstructure has been investigated, both in dried and undried conditions. Finally, a rapid tool for sheet metal forming has been produced.

Extrusion Additive Manufacturing of PEI Pellets

Giberti H.
2022-01-01

Abstract

The simplest, most cost-efficient, and most widespread Additive Manufacturing (AM) technology is Extrusion Additive Manufacturing (EAM). Usually, EAM is performed with filament feedstock, but using pellets instead of filaments yields many benefits, including significantly lower cost and a wider choice of materials. High-performance polymers offer high strength even when produced with AM technique, allowing to produce near-net-shape functional parts. The production of these materials in filament form is still limited and expensive; therefore, in this paper, the possibility of producing AM components with engineering polymers from pellets will be thoroughly investigated. In this work, the effectiveness of a specially designed AM machine for printing high-performance materials in pellet form was tested. The material chosen for the investigation is PEI 1000 which offers outstanding mechanical and thermal properties, giving the possibility to produce with EAM functional components. Sensitivity analyses have been carried out to define a process window in terms of thermal process parameters by observing different response variables. Using the process parameters in the specified range, the additive manufactured material has been mechanically tested, and its microstructure has been investigated, both in dried and undried conditions. Finally, a rapid tool for sheet metal forming has been produced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1477876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact