This paper presents a control method for trajectory tracking of a robotic manipulator, subject to practical constraints and uncertainties. The proposed method is established upon an adaptive backstepping procedure incorporating a tangent-type barrier Lyapunov function and it preserves some important metrics of trajectory tracking such as fast and user-defined settling time response and robustness against actuation faults and unknown control gain. The proposed design maintains the system trajectory within a prescribed performance bound and relaxes the assumption of the bounded initial condition. These salient features preserve the system within a safety bound and, consequently, guarantee the system stability and safety. The performance of the proposed control method is validated on a 3-DOF PUMA 560 robotic manipulator benchmark model, with different operation scenarios. The simulation results confirm the effectiveness and robustness of the proposed control method.
Prescribed performance control of a robotic manipulator with unknown control gain and assigned settling time
Ferrara, Antonella
2024-01-01
Abstract
This paper presents a control method for trajectory tracking of a robotic manipulator, subject to practical constraints and uncertainties. The proposed method is established upon an adaptive backstepping procedure incorporating a tangent-type barrier Lyapunov function and it preserves some important metrics of trajectory tracking such as fast and user-defined settling time response and robustness against actuation faults and unknown control gain. The proposed design maintains the system trajectory within a prescribed performance bound and relaxes the assumption of the bounded initial condition. These salient features preserve the system within a safety bound and, consequently, guarantee the system stability and safety. The performance of the proposed control method is validated on a 3-DOF PUMA 560 robotic manipulator benchmark model, with different operation scenarios. The simulation results confirm the effectiveness and robustness of the proposed control method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.