Introduction: Hereditary ataxias (HAs) encompass a diverse and genetically intricate group of rare neurodegenerative disorders, presenting diagnostic challenges. Whole-exome sequencing (WES) has significantly improved diagnostic success. This study aimed to elucidate genetic causes of cerebellar ataxia within a diverse Brazilian cohort. Methods: Biological samples were collected from individuals with sporadic or familial cerebellar ataxia, spanning various ages and phenotypes, excluding common SCAs and Friedreich ataxia. RFC1 biallelic AAGGG repeat expansion was screened in all patients. For AAGGG-negative cases, WES targeting 441 ataxia-related genes was performed, followed by ExpansionHunter analysis for repeat expansions, including the recently described GGC-ZFHX3. Variant classification adhered to ClinGen guidelines, yielding definitive or probable diagnoses. Results: The study involved 76 diverse Brazilian families. 16 % received definitive diagnoses, and another 16 % received probable ones. RFC1-related ataxia was predominant, with two definitive cases, followed by KIF1A (one definitive and one probable) and SYNE-1 (two probable). Early-onset cases exhibited higher diagnostic rates. ExpansionHunter improved diagnosis by 4 %.We did not detected GGC-ZFHX3 repeat expansion in this cohort. Conclusion: This study highlights diagnostic complexities in cerebellar ataxia, even with advanced genetic methods. RFC1, KIF1A, and SYNE1 emerged as prevalent mutations. ZFHX3 repeat expansion seem to be rare in Brazilian population. Early-onset cases showed higher diagnostic success. WES coupled with ExpansionHunter holds promise as a primary diagnostic tool, emphasizing the need for broader NGS accessibility in Brazil.

Unraveling the genetic landscape of undiagnosed cerebellar ataxia in Brazilian patients

Cortese, Andrea;
2024-01-01

Abstract

Introduction: Hereditary ataxias (HAs) encompass a diverse and genetically intricate group of rare neurodegenerative disorders, presenting diagnostic challenges. Whole-exome sequencing (WES) has significantly improved diagnostic success. This study aimed to elucidate genetic causes of cerebellar ataxia within a diverse Brazilian cohort. Methods: Biological samples were collected from individuals with sporadic or familial cerebellar ataxia, spanning various ages and phenotypes, excluding common SCAs and Friedreich ataxia. RFC1 biallelic AAGGG repeat expansion was screened in all patients. For AAGGG-negative cases, WES targeting 441 ataxia-related genes was performed, followed by ExpansionHunter analysis for repeat expansions, including the recently described GGC-ZFHX3. Variant classification adhered to ClinGen guidelines, yielding definitive or probable diagnoses. Results: The study involved 76 diverse Brazilian families. 16 % received definitive diagnoses, and another 16 % received probable ones. RFC1-related ataxia was predominant, with two definitive cases, followed by KIF1A (one definitive and one probable) and SYNE-1 (two probable). Early-onset cases exhibited higher diagnostic rates. ExpansionHunter improved diagnosis by 4 %.We did not detected GGC-ZFHX3 repeat expansion in this cohort. Conclusion: This study highlights diagnostic complexities in cerebellar ataxia, even with advanced genetic methods. RFC1, KIF1A, and SYNE1 emerged as prevalent mutations. ZFHX3 repeat expansion seem to be rare in Brazilian population. Early-onset cases showed higher diagnostic success. WES coupled with ExpansionHunter holds promise as a primary diagnostic tool, emphasizing the need for broader NGS accessibility in Brazil.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1497916
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact