Native and promiscuous catalytic activities of flavin-dependent Old Yellow Enzymes (OYEs) reported to date are initiated by the reduced flavin upon electron transfer. As a rare exception, the isomerization of a nonactivated C═C bond was shown to be hydride-independent with two nonstereoselective yeast OYEs. Here, we report the asymmetric isomerization of a prochiral model substrate, γ-methyl β,γ-butenolide, to the corresponding (R)- and (S)-enantiomers of the γ-methyl α,β-butenolide in up to >99% ee by two stereocomplementary OYEs of algal and fungal origin, respectively, which operate by asymmetric proton transfer. Mechanistic studies based on two newly solved crystal structures, along with soaking experiments and site-directed mutagenesis, support the crucial role of partially nonconserved tyrosine residues for the activity and stereoselectivity of both (R)- and (S)-isomerases. This study offers a unique view on the potential of flavoproteins in nonredox catalysis and provides hints for scouting olefin isomerases in likely stereodivergent classes of OYEs.
Asymmetric Proton Transfer Catalysis by Stereocomplementary Old Yellow Enzymes for C═C Bond Isomerization Reaction
Robescu, Marina S.;
2022-01-01
Abstract
Native and promiscuous catalytic activities of flavin-dependent Old Yellow Enzymes (OYEs) reported to date are initiated by the reduced flavin upon electron transfer. As a rare exception, the isomerization of a nonactivated C═C bond was shown to be hydride-independent with two nonstereoselective yeast OYEs. Here, we report the asymmetric isomerization of a prochiral model substrate, γ-methyl β,γ-butenolide, to the corresponding (R)- and (S)-enantiomers of the γ-methyl α,β-butenolide in up to >99% ee by two stereocomplementary OYEs of algal and fungal origin, respectively, which operate by asymmetric proton transfer. Mechanistic studies based on two newly solved crystal structures, along with soaking experiments and site-directed mutagenesis, support the crucial role of partially nonconserved tyrosine residues for the activity and stereoselectivity of both (R)- and (S)-isomerases. This study offers a unique view on the potential of flavoproteins in nonredox catalysis and provides hints for scouting olefin isomerases in likely stereodivergent classes of OYEs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.