Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disorder of the central nervous system, leading to progressive functional impairments. Predicting disease progression with a probabilistic and time-dependent approach might help suggest interventions for a better management of the disease. Recently, there has been increasing focus on the impact of air pollutants as environmental factors influencing disease progression. This study employs a Continuous-Time Markov Model (CMM) to explore the impact of air pollution measurements on MS progression using longitudinal data from MS patients in Italy between 2013 and 2022. Preliminary findings indicate a relationship between air pollution and MS progression, with pollutants like Particulate Matter with a diameter of 10 micrometers (PM10) or 2.5 micrometers (PM2.5), Nitrogen Dioxide (NO2), and Carbon Monoxide (CO) showing potential effects on disease activity.
Continuous Markov Models for Analyzing the Effect of Environmental Personal Exposure on Multiple Sclerosis Progression
Vazifehdan M.Writing – Original Draft Preparation
;Bosoni P.Membro del Collaboration Group
;Tavazzi E.Membro del Collaboration Group
;Bellazzi R.Supervision
;Bergamaschi R.Supervision
;Dagliati A.Supervision
2024-01-01
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disorder of the central nervous system, leading to progressive functional impairments. Predicting disease progression with a probabilistic and time-dependent approach might help suggest interventions for a better management of the disease. Recently, there has been increasing focus on the impact of air pollutants as environmental factors influencing disease progression. This study employs a Continuous-Time Markov Model (CMM) to explore the impact of air pollution measurements on MS progression using longitudinal data from MS patients in Italy between 2013 and 2022. Preliminary findings indicate a relationship between air pollution and MS progression, with pollutants like Particulate Matter with a diameter of 10 micrometers (PM10) or 2.5 micrometers (PM2.5), Nitrogen Dioxide (NO2), and Carbon Monoxide (CO) showing potential effects on disease activity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.