: Despite being an old molecule, capsaicin is still a hot topic in the scientific community, and the development of new capsaicinoids is a promising pharmacological approach in the management of skin disorders related to inflammation and pruritus. Here we report the synthesis and the evaluation of capsaicin soft drugs that undergo deactivation by the hydrolyzing activity of skin esterases. The implanting of an ester group in the lipophilic moiety of capsaicinoids by the Passerini multicomponent reaction affords both agonists and antagonists that retain transient receptor potential vanilloid 1 channel (TRPV1) modulating activity and, at the same time, are susceptible to hydrolysis. The most promising antagonist identified shows in vivo anti-nociceptive activity on pruritus and hyperalgesia without producing hyperthermia, thus validating it as novel treatment for dermatological conditions that implicate TRPV1 channel dysfunction.

Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) Channel Softly: The Discovery of Passerini Adducts as a Topical Treatment for Inflammatory Skin Disorders

Travelli C.;
2018-01-01

Abstract

: Despite being an old molecule, capsaicin is still a hot topic in the scientific community, and the development of new capsaicinoids is a promising pharmacological approach in the management of skin disorders related to inflammation and pruritus. Here we report the synthesis and the evaluation of capsaicin soft drugs that undergo deactivation by the hydrolyzing activity of skin esterases. The implanting of an ester group in the lipophilic moiety of capsaicinoids by the Passerini multicomponent reaction affords both agonists and antagonists that retain transient receptor potential vanilloid 1 channel (TRPV1) modulating activity and, at the same time, are susceptible to hydrolysis. The most promising antagonist identified shows in vivo anti-nociceptive activity on pruritus and hyperalgesia without producing hyperthermia, thus validating it as novel treatment for dermatological conditions that implicate TRPV1 channel dysfunction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1500876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact