This extended abstract presents an overview of recent research on flexible polymeric pulsating heat pipes (PPHPs). Two promising fabrication techniques are explored - selective transmission laser welding and stereolithography (SLA) 3D printing. The thermal performance of PPHPs manufactured using these methods is experimentally investigated, including the impact of microgravity conditions and bending on the laser-welded design. Key findings show that the SLA technique enables precise control over complex geometries, while the laser-welded PPHPs demonstrate effective thermal performance even in microgravity. Non-uniform channel configurations are found to promote fluid circulation and enhance heat transfer. This work highlights the potential of polymeric PHPs for flexible electronics cooling and disposable applications.
FLEXIBLE POLYMERIC PULSATING HEAT PIPES: FABRICATION TECHNIQUES AND THERMAL PERFORMANCE INVESTIGATION
Volfango BertolaMembro del Collaboration Group
;Marco MarengoWriting – Review & Editing
2024-01-01
Abstract
This extended abstract presents an overview of recent research on flexible polymeric pulsating heat pipes (PPHPs). Two promising fabrication techniques are explored - selective transmission laser welding and stereolithography (SLA) 3D printing. The thermal performance of PPHPs manufactured using these methods is experimentally investigated, including the impact of microgravity conditions and bending on the laser-welded design. Key findings show that the SLA technique enables precise control over complex geometries, while the laser-welded PPHPs demonstrate effective thermal performance even in microgravity. Non-uniform channel configurations are found to promote fluid circulation and enhance heat transfer. This work highlights the potential of polymeric PHPs for flexible electronics cooling and disposable applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.