The urgent need for safer and innovative antitubercular agents remains a priority for the scientific community. In pursuit of this goal, we designed and evaluated novel 5-phenylfuran-2-carboxylic acid derivatives targeting Mycobacterium tuberculosis (Mtb) salicylate synthase (MbtI), a key enzyme, absent in humans, that plays a crucial role in Mtb virulence. Several potent MbtI inhibitors demonstrating significant antitubercular activity and a favorable safety profile were identified. Structure-guided optimization yielded 5-(3-cyano-5-isobutoxyphenyl)furan-2-carboxylic acid (1e), which exhibited strong MbtI inhibition (IC50 = 11.2 μM) and a promising in vitro antitubercular activity (MIC99 = 32 μM against M. bovis BCG). Esters of 1e were effectively loaded into poly(2-methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacrylate) (PMPC-PDPA) polymersomes (POs) and delivered to intracellular mycobacteria, resulting in reduced Mtb viability. This study provides a foundation for the use of POs in the development of future MbtI-targeted therapies for tuberculosis.

Nanoenabling MbtI Inhibitors for Next-Generation Tuberculosis Therapy

Stelitano, Giovanni;Chiarelli, Laurent R;Cocorullo, Mario;Casali, Emanuele;Porta, Alessio;Zanoni, Giuseppe;
2025-01-01

Abstract

The urgent need for safer and innovative antitubercular agents remains a priority for the scientific community. In pursuit of this goal, we designed and evaluated novel 5-phenylfuran-2-carboxylic acid derivatives targeting Mycobacterium tuberculosis (Mtb) salicylate synthase (MbtI), a key enzyme, absent in humans, that plays a crucial role in Mtb virulence. Several potent MbtI inhibitors demonstrating significant antitubercular activity and a favorable safety profile were identified. Structure-guided optimization yielded 5-(3-cyano-5-isobutoxyphenyl)furan-2-carboxylic acid (1e), which exhibited strong MbtI inhibition (IC50 = 11.2 μM) and a promising in vitro antitubercular activity (MIC99 = 32 μM against M. bovis BCG). Esters of 1e were effectively loaded into poly(2-methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacrylate) (PMPC-PDPA) polymersomes (POs) and delivered to intracellular mycobacteria, resulting in reduced Mtb viability. This study provides a foundation for the use of POs in the development of future MbtI-targeted therapies for tuberculosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1519895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact