We bring evidence that the recently discovered property of natural stability of the high-energy resummation is directly connected to the fragmentation mechanism of heavy hadrons. As a phenomenological support, we provide predictions for differential distributions sensitive to heavy-hadron tags, calculated at the next-to-leading logarithmic level of the hybrid high-energy/collinear factorization (NLL/NLO), as implemented in the JETHAD multimodular code. We show that the stabilizing mechanism is encoded in gluon channels of both heavy-flavor collinear fragmentation functions extracted from data and the ones evolved from a nonrelativistic QCD input.
STABILIZING BFKL VIA HEAVY-FLAVOR AND NRQCD FRAGMENTATION
Celiberto F. G.
2023-01-01
Abstract
We bring evidence that the recently discovered property of natural stability of the high-energy resummation is directly connected to the fragmentation mechanism of heavy hadrons. As a phenomenological support, we provide predictions for differential distributions sensitive to heavy-hadron tags, calculated at the next-to-leading logarithmic level of the hybrid high-energy/collinear factorization (NLL/NLO), as implemented in the JETHAD multimodular code. We show that the stabilizing mechanism is encoded in gluon channels of both heavy-flavor collinear fragmentation functions extracted from data and the ones evolved from a nonrelativistic QCD input.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.