Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Background: High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. Methods: In this modelling study, we developed a framework that used the geographically specific HIV prevalence data collected in seroprevalence surveys and antenatal care clinics to train a model that estimates HIV incidence and mortality among individuals aged 15–49 years. We used a model-based geostatistical framework to estimate HIV prevalence at the second administrative level in 44 countries in sub-Saharan Africa for 2000–18 and sought data on the number of individuals on antiretroviral therapy (ART) by second-level administrative unit. We then modified the Estimation and Projection Package (EPP) to use these HIV prevalence and treatment estimates to estimate HIV incidence and mortality by second-level administrative unit. Findings: The estimates suggest substantial variation in HIV incidence and mortality rates both between and within countries in sub-Saharan Africa, with 15 countries having a ten-times or greater difference in estimated HIV incidence between the second-level administrative units with the lowest and highest estimated incidence levels. Across all 44 countries in 2018, HIV incidence ranged from 2·8 (95% uncertainty interval 2·1–3·8) in Mauritania to 1585·9 (1369·4–1824·8) cases per 100 000 people in Lesotho and HIV mortality ranged from 0·8 (0·7–0·9) in Mauritania to 676·5 (513·6–888·0) deaths per 100 000 people in Lesotho. Variation in both incidence and mortality was substantially greater at the subnational level than at the national level and the highest estimated rates were accordingly higher. Among second-level administrative units, Guijá District, Gaza Province, Mozambique, had the highest estimated HIV incidence (4661·7 [2544·8–8120·3]) cases per 100 000 people in 2018 and Inhassunge District, Zambezia Province, Mozambique, had the highest estimated HIV mortality rate (1163·0 [679·0–1866·8]) deaths per 100 000 people. Further, the rate of reduction in HIV incidence and mortality from 2000 to 2018, as well as the ratio of new infections to the number of people living with HIV was highly variable. Although most second-level administrative units had declines in the number of new cases (3316 [81·1%] of 4087 units) and number of deaths (3325 [81·4%]), nearly all appeared well short of the targeted 75% reduction in new cases and deaths between 2010 and 2020. Interpretation: Our estimates suggest that most second-level administrative units in sub-Saharan Africa are falling short of the targeted 75% reduction in new cases and deaths by 2020, which is further compounded by substantial within-country variability. These estimates will help decision makers and programme implementers expand access to ART and better target health resources to higher burden subnational areas. Funding: Bill & Melinda Gates Foundation.
Subnational mapping of HIV incidence and mortality among individuals aged 15-49 years in sub-Saharan Africa, 2000-18: a modelling study
Sartorius B.;VanderHeide J. D.;Yang M.;Goosmann E. A.;Hon J.;Haeuser E.;Cork M. A.;Perkins S.;Jahagirdar D.;Schaeffer L. E.;Serfes A. L.;LeGrand K. E.;Abbastabar H.;Abebo Z. H.;Abosetugn A. E.;Abu-Gharbieh E.;Accrombessi M. M. K.;Adebayo O. M.;Adegbosin A. E.;Adekanmbi V.;Adetokunboh O. O.;Adeyinka D. A.;Ahinkorah B. O.;Ahmadi K.;Ahmed M. B.;Akalu Y.;Akinyemi O. O.;Akinyemi R. O.;Aklilu A.;Akunna C. J.;Alahdab F.;Al-Aly Z.;Alam N.;Alamneh A. A.;Alanzi T. M.;Alemu B. W.;Alhassan R. K.;Ali T.;Alipour V.;Amini S.;Ancuceanu R.;Ansari F.;Anteneh Z. A.;Anvari D.;Anwer R.;Appiah S. C. Y.;Arabloo J.;Asemahagn M. A.;Asghari Jafarabadi M.;Asmare W. N.;Atnafu D. D.;Atout M. M. W.;Atreya A.;Ausloos M.;Awedew A. F.;Ayala Quintanilla B. P.;Ayanore M. A.;Aynalem Y. A.;Ayza M. A.;Azari S.;Azene Z. N.;Babar Z. -U. -D.;Baig A. A.;Balakrishnan S.;Banach M.;Barnighausen T. W.;Basu S.;Bayati M.;Bedi N.;Bekuma T. T.;Bezabhe W. M. M.;Bhagavathula A. S.;Bhardwaj P.;Bhattacharyya K.;Bhutta Z. A.;Bibi S.;Bikbov B.;Birhan T. A.;Bitew Z. W.;Bockarie M. J.;Boloor A.;Brady O. J.;Bragazzi N. L.;Briko A. N.;Briko N. I.;Burugina Nagaraja S.;Butt Z. A.;Cardenas R.;Carvalho F.;Charan J.;Chatterjee S.;Chattu S. K.;Chattu V. K.;Chowdhury M. A. K.;Chu D. -T.;Cook A. J.;Cormier N. M.;Cowden R. G.;Culquichicon C.;Dagnew B.;Dahlawi S. M. A.;Damiani G.;Daneshpajouhnejad P.;Daoud F.;Daryani A.;das Neves J.;Davis Weaver N.;Derbew Molla M.;Deribe K.;Desta A. A.;Deuba K.;Dharmaratne S. D.;Dhungana G. P.;Diaz D.;Djalalinia S.;Doku P. N.;Dubljanin E.;Duko B.;Eagan A. W.;Earl L.;Eaton J. W.;Effiong A.;El Sayed Zaki M.;El Tantawi M.;Elayedath R.;El-Jaafary S. I.;Elsharkawy A.;Eskandarieh S.;Eyawo O.;Ezzikouri S.;Fasanmi A. O.;Fasil A.;Fauk N. K.;Feigin V. L.;Ferede T. Y.;Fernandes E.;Fischer F.;Foigt N. A.;Folayan M. O.;Foroutan M.;Francis J. M.;Fukumoto T.;Gad M. M.;Geberemariyam B. S.;Gebregiorgis B.;Gebremichael B.;Gesesew H. A.;Getacher L.;Ghadiri K.;Ghashghaee A.;Gilani S. A.;Ginindza T. G.;Glagn M.;Golechha M.;Gona P. N.;Gubari M. I. M.;Gugnani H. C.;Guido D.;Guled R. A.;Hall B. J.;Hamidi S.;Handiso D. W.;Hargono A.;Hashi A.;Hassanipour S.;Hassankhani H.;Hayat K.;Herteliu C.;de Hidru H. D.;Holla R.;Hosgood H. D.;Hossain N.;Hosseini M.;Hosseinzadeh M.;Househ M.;Hwang B. -F.;Ibitoye S. E.;Ilesanmi O. S.;Ilic I. M.;Ilic M. D.;Irvani S. S. N.;Iwu C. C. D.;Iwu C. J.;Iyamu I. O.;Jain V.;Jakovljevic M.;Jalilian F.;Jha R. P.;Johnson K. B.;Joshua V.;Joukar F.;Jozwiak J. J.;Kabir A.;Kalankesh L. R.;Kalhor R.;Kamath A.;Kamyari N.;Kanchan T.;Karami Matin B.;Karch A.;Karimi S. E.;Kasa A. S.;Kassahun G.;Kayode G. A.;Kazemi Karyani A.;Keiyoro P. N.;Kelkay B.;Khalid N.;Khan G.;Khan J.;Khan M. N.;Khatab K.;Khazaei S.;Kim Y. J.;Kisa A.;Kisa S.;Kochhar S.;Kopec J. A.;Kosen S.;Koulmane Laxminarayana S.;Koyanagi A.;Krishan K.;Kuate Defo B.;Kugbey N.;Kulkarni V.;Kumar M.;Kumar N.;Kurmi O. P.;Kusuma D.;Kuupiel D.;Kyu H. H.;La Vecchia C.;Lal D. K.;Lam J. O.;Landires I.;Lasrado S.;Lazarus J. V.;Lazzar-Atwood A.;Lee P. H.;Leshargie C. T.;Li B.;Liu X.;Lopukhov P. D.;Amin Hawraz;Madi D.;Mahasha P. W.;Majeed A.;Maleki A.;Maleki S.;Mamun A. A.;Manafi N.;Mansournia M. A.;Martins-Melo F. R.;Masoumi S. Z.;Mayala B. K.;Meharie B. G.;Meheretu H. A. A.;Meles H. G.;Melku M.;Mendoza W.;Mengesha E. W.;Meretoja T. J.;Mersha A. M.;Mestrovic T.;Miller T. R.;Mirica A.;Mirzaei-Alavijeh M.;Mohamad O.;Mohammad Y.;Mohammadian-Hafshejani A.;Mohammed J. A.;Mohammed S.;Mohammed S.;Mokdad A. H.;Mokonnon T.;Molokhia M.;Moradi M.;Moradi Y.;Moradzadeh R.;Moraga P.;Mosser J. F.;Munro S. B.;Mustafa G.;Muthupandian S.;Naderi M.;Nagarajan A. J.;Naghavi M.;Naveed M.;Nayak V. C.;Nazari J.;Ndejjo R.;Nepal S.;Netsere H. B.;Ngalesoni F. N.;Nguefack-Tsague G.;Ngunjiri J. W.;Nigatu Y. T.;Nigussie S. N.;Nnaji C. A.;Noubiap J. J.;Nunez-Samudio V.;Oancea B.;Odukoya O. O.;Ogbo F. A.;Oladimeji O.;Olagunju A. T.;Olusanya B. O.;Olusanya J. O.;Omer M. O.;Omonisi A. E. E.;Onwujekwe O. E.;Orisakwe O. E.;Otstavnov N.;Owolabi M. O.;Mahesh P. A.;Padubidri J. R.;Pakhale S.;Pana A.;Pandi-Perumal S. R.;Patel U. K.;Pathak M.;Patton G. C.;Pawar S.;Peprah E. K.;Pokhrel K. N.;Postma M. J.;Pottoo F. H.;Pourjafar H.;Pribadi D. R. A.;Quazi Syed Z.;Rafiei A.;Rahim F.;Rahman M. H. U.;Rahmani A. M.;Ram P.;Rana J.;Ranabhat C. L.;Rao S.;Rao S. J.;Rathi P.;Rawaf D. L.;Rawaf S.;Rawassizadeh R.;Renjith V.;Reta M. A.;Rezaei N.;Rezapour A.;Ribeiro A. I.;Ross J. M.;Rumisha S. F.;Sagar R.;Sahu M.;Sajadi S. M.;Salem M. R.;Samy A. M.;Sathian B.;Schutte A. E.;Seidu A. -A.;Sha F.;Shafaat O.;Shahbaz M.;Shaikh M. A.;Shaka M. F.;Sheikh A.;Shibuya K.;Shin J. I.;Shivakumar K. M.;Sidemo N. B.;Singh J. A.;Skryabin V. Y.;Skryabina A. A.;Soheili A.;Soltani S.;Somefun O. D.;Sorrie M. B.;Spurlock E. E.;Sufiyan M. B.;Taddele B. W.;Tadesse E. G.;Tamir Z.;Tamiru A. T.;Tanser F. C.;Taveira N.;Tehrani-Banihashemi A.;Tekalegn Y.;Tesfay F. H.;Tessema B.;Tessema Z. T.;Thakur B.;Tolani M. A.;Topor-Madry R.;Torrado M.;Tovani-Palone M. R.;Traini E.;Tsai A. C.;Tsegaye G. W.;Ullah I.;Ullah S.;Umeokonkwo C. D.;Unnikrishnan B.;Vardavas C.;Violante F. S.;Vo B.;Wado Y. D.;Waheed Y.;Wamai R. G.;Wang Y.;Ward P.;Werdecker A.;Wickramasinghe N. D.;Wijeratne T.;Wiysonge C. S.;Wondmeneh T. G.;Yamada T.;Yaya S.;Yeshaw Y.;Yeshitila Y. G.;Yilma M. T.;Yip P.;Yonemoto N.;Yosef T.;Yusefzadeh H.;Zaidi S. S.;Zaki L.;Zamanian M.;Zastrozhin M. S.;Zastrozhina A.;Zewdie D. T.;Zhang Y.;Zhang Z. -J.;Ziapour A.;Hay S. I.;Dwyer-Lindgren L.
2021-01-01
Abstract
Background: High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. Methods: In this modelling study, we developed a framework that used the geographically specific HIV prevalence data collected in seroprevalence surveys and antenatal care clinics to train a model that estimates HIV incidence and mortality among individuals aged 15–49 years. We used a model-based geostatistical framework to estimate HIV prevalence at the second administrative level in 44 countries in sub-Saharan Africa for 2000–18 and sought data on the number of individuals on antiretroviral therapy (ART) by second-level administrative unit. We then modified the Estimation and Projection Package (EPP) to use these HIV prevalence and treatment estimates to estimate HIV incidence and mortality by second-level administrative unit. Findings: The estimates suggest substantial variation in HIV incidence and mortality rates both between and within countries in sub-Saharan Africa, with 15 countries having a ten-times or greater difference in estimated HIV incidence between the second-level administrative units with the lowest and highest estimated incidence levels. Across all 44 countries in 2018, HIV incidence ranged from 2·8 (95% uncertainty interval 2·1–3·8) in Mauritania to 1585·9 (1369·4–1824·8) cases per 100 000 people in Lesotho and HIV mortality ranged from 0·8 (0·7–0·9) in Mauritania to 676·5 (513·6–888·0) deaths per 100 000 people in Lesotho. Variation in both incidence and mortality was substantially greater at the subnational level than at the national level and the highest estimated rates were accordingly higher. Among second-level administrative units, Guijá District, Gaza Province, Mozambique, had the highest estimated HIV incidence (4661·7 [2544·8–8120·3]) cases per 100 000 people in 2018 and Inhassunge District, Zambezia Province, Mozambique, had the highest estimated HIV mortality rate (1163·0 [679·0–1866·8]) deaths per 100 000 people. Further, the rate of reduction in HIV incidence and mortality from 2000 to 2018, as well as the ratio of new infections to the number of people living with HIV was highly variable. Although most second-level administrative units had declines in the number of new cases (3316 [81·1%] of 4087 units) and number of deaths (3325 [81·4%]), nearly all appeared well short of the targeted 75% reduction in new cases and deaths between 2010 and 2020. Interpretation: Our estimates suggest that most second-level administrative units in sub-Saharan Africa are falling short of the targeted 75% reduction in new cases and deaths by 2020, which is further compounded by substantial within-country variability. These estimates will help decision makers and programme implementers expand access to ART and better target health resources to higher burden subnational areas. Funding: Bill & Melinda Gates Foundation.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1536023
Citazioni
ND
34
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.