Viene presentata una classe di misure di probabilità aleatorie ottenute mediante la normalizzazione di misure aleatorie ad incrementi indipendenti. Le leggi di tali misure di probabilità aleatorie, dette anche RMI normalizzate, possono svolgere il ruolo di distribuzioni iniziali per l'inferenza bayesiana nonparametrica. Si dimostra che esse godono di proprietà analoghe a quelle ben note del processo di Dirichlet. In ipotesi di scambiabilità delle osservazioni, è possibile fornire una caratterizzazione della distribuzione finale di una RMI normalizzata in termini di mistura. Sfruttando tale caratterizzazione, si ottiene un'espressione della distribuzione finale della media di una RMI normalizzata. Infine, viene fornita una rappresentazione delle leggi predittive ottenute a partire da una RMI normalizzata. Essa consiste di una combinazione lineare del parametro della RMI e di una distribuzione empirica ponderata..

On a class of priors for Bayesian nonparametrics

LIJOI, ANTONIO;
2004-01-01

Abstract

Viene presentata una classe di misure di probabilità aleatorie ottenute mediante la normalizzazione di misure aleatorie ad incrementi indipendenti. Le leggi di tali misure di probabilità aleatorie, dette anche RMI normalizzate, possono svolgere il ruolo di distribuzioni iniziali per l'inferenza bayesiana nonparametrica. Si dimostra che esse godono di proprietà analoghe a quelle ben note del processo di Dirichlet. In ipotesi di scambiabilità delle osservazioni, è possibile fornire una caratterizzazione della distribuzione finale di una RMI normalizzata in termini di mistura. Sfruttando tale caratterizzazione, si ottiene un'espressione della distribuzione finale della media di una RMI normalizzata. Infine, viene fornita una rappresentazione delle leggi predittive ottenute a partire da una RMI normalizzata. Essa consiste di una combinazione lineare del parametro della RMI e di una distribuzione empirica ponderata..
2004
8871780345
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/19580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact