Biometric identification systems exploit automated methods of recognition based on physiological or behavioural people characteristics. Among these, fingerprints are very affordable biometric identifiers. In order to build embedded systems performing real-time authentication, a fast computational unit for image processing is required. In this paper we propose a parallel architecture that efficiently implements the high computationally demanding core of a matching algorithm based on Band Limited Phase Only spatial Correlation (BLPOC), elaborated by two concurrent computational units implemented onto Stratix II family Altera FPGA. The realised device is competitive with those provided by similar hardware solutions described in literature and outperforms the elaboration capabilities of general purpose PC processors.
A Multicore Embedded Processor for Fingerprint Recognition
DANESE, GIOVANNI;GIACHERO, MAURO;LEPORATI, FRANCESCO
;NAZZICARI, NELSON DAVIDE
2010-01-01
Abstract
Biometric identification systems exploit automated methods of recognition based on physiological or behavioural people characteristics. Among these, fingerprints are very affordable biometric identifiers. In order to build embedded systems performing real-time authentication, a fast computational unit for image processing is required. In this paper we propose a parallel architecture that efficiently implements the high computationally demanding core of a matching algorithm based on Band Limited Phase Only spatial Correlation (BLPOC), elaborated by two concurrent computational units implemented onto Stratix II family Altera FPGA. The realised device is competitive with those provided by similar hardware solutions described in literature and outperforms the elaboration capabilities of general purpose PC processors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.