Temporal data mining is becoming an important tool for health care providers and decision makers. The capability of handling and analyzing complex multivariate data may allow to extract useful information coming from the day-by-day activity of health care organizations as well as from patients monitoring. In this paper we review the main approaches presented in the literature to mine biomedical time sequences and we present a novel approach able to deal with "point-like" and "interval-like" events. The methods is described and the results obtained on two clinical data sets are shown.

Methods and tools for mining multivariate temporal data in clinical and biomedical applications.

BELLAZZI, RICCARDO;SACCHI, LUCIA;CONCARO, STEFANO
2009-01-01

Abstract

Temporal data mining is becoming an important tool for health care providers and decision makers. The capability of handling and analyzing complex multivariate data may allow to extract useful information coming from the day-by-day activity of health care organizations as well as from patients monitoring. In this paper we review the main approaches presented in the literature to mine biomedical time sequences and we present a novel approach able to deal with "point-like" and "interval-like" events. The methods is described and the results obtained on two clinical data sets are shown.
2009
978-1-4244-3295-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/223686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact