The outcome of carotid artery stenting (CAS) depends on a proper selection of patients and devices, requiring dedicated tools able to relate the device features with the target vessel. In the present study, we use finite element analysis to evaluate the performance of three self-expanding stent designs (laser- cut open-cell, laser-cut closed-cell, braided closed-cell) in a carotid artery (CA). We define six stent models considering the three designs in different sizes and configurations (i.e. straight and tapered), evaluating the stress induced in the vessel wall, the lumen gain and the vessel straightening in a patient-specific CA model based on computed angiography tomography (CTA) images. For the considered vascular anatomy and stents, the results suggest that: (i) the laser-cut closed-cell design provides a higher lumen gain; (ii) the impact of the stent configuration and of the stent oversizing is negligible with respect to the lumen gain and relevant with respect to the stress induced in the vessel wall; (iii) stent design, configuration and size have a limited impact on the vessel straightening. The presented numerical model represents a first step towards a quantitative assessment of the relation between a given carotid stent design and a given patient-specific CA anatomy.

Carotid artery stenting simulation: From patient-specific images to finite element analysis

AURICCHIO, FERDINANDO;CONTI, MICHELE;
2011-01-01

Abstract

The outcome of carotid artery stenting (CAS) depends on a proper selection of patients and devices, requiring dedicated tools able to relate the device features with the target vessel. In the present study, we use finite element analysis to evaluate the performance of three self-expanding stent designs (laser- cut open-cell, laser-cut closed-cell, braided closed-cell) in a carotid artery (CA). We define six stent models considering the three designs in different sizes and configurations (i.e. straight and tapered), evaluating the stress induced in the vessel wall, the lumen gain and the vessel straightening in a patient-specific CA model based on computed angiography tomography (CTA) images. For the considered vascular anatomy and stents, the results suggest that: (i) the laser-cut closed-cell design provides a higher lumen gain; (ii) the impact of the stent configuration and of the stent oversizing is negligible with respect to the lumen gain and relevant with respect to the stress induced in the vessel wall; (iii) stent design, configuration and size have a limited impact on the vessel straightening. The presented numerical model represents a first step towards a quantitative assessment of the relation between a given carotid stent design and a given patient-specific CA anatomy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/225265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 146
  • ???jsp.display-item.citation.isi??? 132
social impact