We propose a novel Bayesian optimization procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induces a corresponding clustering of the returns. We identify via an optimization procedure the partition that best separates standard observations from the atypical ones. The methodology is illustrated with reference to a real dataset, for which we also provide a microeconomic interpretation of the detected outliers.

Bayesian outlier detection in Capital Asset Pricing Model

DE GIULI, MARIA ELENA;MAGGI, MARIO ALESSANDRO;TARANTOLA, CLAUDIA
2010-01-01

Abstract

We propose a novel Bayesian optimization procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induces a corresponding clustering of the returns. We identify via an optimization procedure the partition that best separates standard observations from the atypical ones. The methodology is illustrated with reference to a real dataset, for which we also provide a microeconomic interpretation of the detected outliers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/226106
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact