Engineering bone typically uses highly porous scaffolds, osteoblasts or cells that can become osteoblasts, and regulating factors that promote cell attachment, differentiation, and mineralized bone formation. In this study we investigated the effects of the electromagnetic stimulation on SAOS-2 cells, from a human osteosarcoma cell line using a sintered 3D titanium scaffold. In comparison with control conditions (standard cell culture incubator, where no electromagnetic stimulus was detectable), the electromagnetic stimulus (magnetic field, 2 mT; frequency, 75 Hz) increased the cell proliferation and the surface coating with decorin, osteocalcin, osteopontin, and type-I collagen. The electromagnetic stimulus aimed at obtaining an improved cell proliferation and production of bone proteins, with a consequent surface coating of the scaffold. The protein -coated 3D titanium scaffold could be used, in clinical applications, as an implant for bone repair.

Strategies combining cells and scaffolds for bone tissue engineering

Saino E;Fassina L;Sbarra MS;Cusella De Angelis MG;Magenes G;Benazzo F;Visai L
2009-01-01

Abstract

Engineering bone typically uses highly porous scaffolds, osteoblasts or cells that can become osteoblasts, and regulating factors that promote cell attachment, differentiation, and mineralized bone formation. In this study we investigated the effects of the electromagnetic stimulation on SAOS-2 cells, from a human osteosarcoma cell line using a sintered 3D titanium scaffold. In comparison with control conditions (standard cell culture incubator, where no electromagnetic stimulus was detectable), the electromagnetic stimulus (magnetic field, 2 mT; frequency, 75 Hz) increased the cell proliferation and the surface coating with decorin, osteocalcin, osteopontin, and type-I collagen. The electromagnetic stimulus aimed at obtaining an improved cell proliferation and production of bone proteins, with a consequent surface coating of the scaffold. The protein -coated 3D titanium scaffold could be used, in clinical applications, as an implant for bone repair.
2009
IFMBE Proceedings
978-3-642-03900-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/244299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact