We study quantum learning algorithms for quantum measurements. The optimal learning algorithm is derived for arbitrary von Neumann measurements in the case of training with one or two examples. The analysis of the case of three examples reveals that, differently from the learning of unitary gates, the optimal algorithm for learning of quantum measurements cannot be parallelized, and requires quantum memories for the storage of information.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Quantum learning algorithms for quantum measurements | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Abstract: | We study quantum learning algorithms for quantum measurements. The optimal learning algorithm is derived for arbitrary von Neumann measurements in the case of training with one or two examples. The analysis of the case of three examples reveals that, differently from the learning of unitary gates, the optimal algorithm for learning of quantum measurements cannot be parallelized, and requires quantum memories for the storage of information. | |
Handle: | http://hdl.handle.net/11571/309511 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.