Nowadays, ultrasound diagnostic imaging is one of the non-invasive techniques mostly used in the clinical practice. Recent advances in this field have brought to the development of small and portable systems. New bidimensional probes consisting of 2D phased arrays, allow to obtain real-time 3D representations of moving organs and blood vessels anatomy. Being the complexity of such 4D ultrasound imaging systems significantly increased, new challenges concerning electronics integration arise for designers. In this paper a software simulator is described, which has been developed in order to model ultrasound wave generation, pressure field distribution and echoes reception, with the aim to become a useful tool for optimizing the probe design. The paper mainly focuses on linear ultrasound field modeling; preliminary results on non-linear interactions with contrast agents are also here introduced.

Simulating Ultrasound Fields for 2D Phased-Array Probes Design Optimization

MATRONE, GIULIA;MAGENES, GIOVANNI
2011-01-01

Abstract

Nowadays, ultrasound diagnostic imaging is one of the non-invasive techniques mostly used in the clinical practice. Recent advances in this field have brought to the development of small and portable systems. New bidimensional probes consisting of 2D phased arrays, allow to obtain real-time 3D representations of moving organs and blood vessels anatomy. Being the complexity of such 4D ultrasound imaging systems significantly increased, new challenges concerning electronics integration arise for designers. In this paper a software simulator is described, which has been developed in order to model ultrasound wave generation, pressure field distribution and echoes reception, with the aim to become a useful tool for optimizing the probe design. The paper mainly focuses on linear ultrasound field modeling; preliminary results on non-linear interactions with contrast agents are also here introduced.
2011
9781424441228
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/316309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact