In the last decade, improvements in diabetes daily management have become possible thanks to the development of minimally-invasive portable sensors which allow continuous glucose monitoring (CGM) for several days. In particular, hypo and hyperglycemia can be promptly detected when glucose exceeds the normal range thresholds, and even avoided through the use of on-line glucose prediction algorithms. Several algorithms with prediction horizon (PH) of 15-30-45 min have been proposed in the literature, e.g. including AR/ARMA time-series modeling and neural networks. Most of them are fed by CGM signals only. The purpose of this work is to develop a new short-term glucose prediction algorithm based on a neural network that, in addition to past CGM readings, also exploits information on carbohydrates intakes quantitatively described through a physiological model. Results on simulated data quantitatively show that the new method outperforms other published algorithms. Qualitative preliminary results on a real diabetic subject confirm the potentialities of the new approach.

A New Neural Network Approach for Short-Term Glucose Prediction Using Continuous Glucose Monitoring Time-Series and Meal Information

DE NICOLAO, GIUSEPPE;
2011-01-01

Abstract

In the last decade, improvements in diabetes daily management have become possible thanks to the development of minimally-invasive portable sensors which allow continuous glucose monitoring (CGM) for several days. In particular, hypo and hyperglycemia can be promptly detected when glucose exceeds the normal range thresholds, and even avoided through the use of on-line glucose prediction algorithms. Several algorithms with prediction horizon (PH) of 15-30-45 min have been proposed in the literature, e.g. including AR/ARMA time-series modeling and neural networks. Most of them are fed by CGM signals only. The purpose of this work is to develop a new short-term glucose prediction algorithm based on a neural network that, in addition to past CGM readings, also exploits information on carbohydrates intakes quantitatively described through a physiological model. Results on simulated data quantitatively show that the new method outperforms other published algorithms. Qualitative preliminary results on a real diabetic subject confirm the potentialities of the new approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/320108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 47
social impact