In this note we summarize some results of a forthcoming paper (see [15]), where we examine, in particular, the long time behavior of the so-called quasistationary phase field model by using a gradient flow approach. Our strategy in fact, is inspired by recent existence results which show that gradient flows of suitable non-convex functionals yield solutions to the related quasistationary phase field systems. Thus, we firstly present the long-time behavior of solutions to an abstract non-convex gradient flow equation, by carefully exploiting the notion of generalized semiflows by J.M. Ball and we provide some sufficient conditions for the existence of the global attractor for the solution semiflow. Then, the existence of the global attractor for a proper subset of all the solutions to the quasistationary phase field model is obtained as a byproduct of our abstract results.

Global attractors for the quasistationary phase field model: a gradient flow approach.

SEGATTI, ANTONIO GIOVANNI
2007-01-01

Abstract

In this note we summarize some results of a forthcoming paper (see [15]), where we examine, in particular, the long time behavior of the so-called quasistationary phase field model by using a gradient flow approach. Our strategy in fact, is inspired by recent existence results which show that gradient flows of suitable non-convex functionals yield solutions to the related quasistationary phase field systems. Thus, we firstly present the long-time behavior of solutions to an abstract non-convex gradient flow equation, by carefully exploiting the notion of generalized semiflows by J.M. Ball and we provide some sufficient conditions for the existence of the global attractor for the solution semiflow. Then, the existence of the global attractor for a proper subset of all the solutions to the quasistationary phase field model is obtained as a byproduct of our abstract results.
2007
International Series of Numerical Mathematics
9783764377182
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/567645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact