This paper presents the application of a variety of techniques to study jet substructure. The performance of various modied jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop ltering, trimming, and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the ecacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.70+1-1 fb-1 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy of √s=7 TeV.
Performance of jet substructure techniques for large-R jets in proton-proton collisions at √s=7 TeV using the ATLAS detector
CONTA, CLAUDIO;FRANCHINO, SILVIA;FRATERNALI, MARCO;LIVAN, MICHELE;NEGRI, ANDREA;REBUZZI, DANIELA MARCELLA;RIMOLDI, ADELE;
2013-01-01
Abstract
This paper presents the application of a variety of techniques to study jet substructure. The performance of various modied jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop ltering, trimming, and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the ecacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.70+1-1 fb-1 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy of √s=7 TeV.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.