Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at the middle turn (frequency ∼2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ∼-18 mV). The value of Po was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+ channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3 Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds.

Fine Tuning of CaV1.3 Ca2+ Channel Properties in Adult Inner Hair Cells Positioned in the Most Sensitive Region of the Gerbil Cochlea

MAGISTRETTI, JACOPO;RUSSO, GIANCARLO;MASETTO, SERGIO
2014-01-01

Abstract

Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at the middle turn (frequency ∼2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ∼-18 mV). The value of Po was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+ channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3 Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds.
2014
Physiology considers resources that study the regulation of biological functions at the level of the whole organism. This includes research from biochemical, cell biological and whole system studies of human and animal physiology. Comparative physiology, biological rhythms, and physiological measurement are also included. Resources emphasizing cellular regulation, or the physiology of specific organs are excluded and are covered in the Cell & Developmental Biology and Medical Research: Organs & Systems categories.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
9
11
1
12
12
calcium channel; animal cell; inner hair cell
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237458/pdf/pone.0113750.pdf
9
info:eu-repo/semantics/article
262
Zampini, V.; Johnson, S. L.; Franz, C.; Knipper, M.; Holley, M. C.; Magistretti, Jacopo; Russo, Giancarlo; Marcotti, W.; Masetto, Sergio
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/980068
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact