(1) Objective: to obtain a reproducible, robust, well-defined, and cost-affordable in vitro model of human cartilage degeneration, suitable for drug screening; (2) Methods: we proposed 3D models of engineered cartilage, considering two human chondrocyte sources (articular/nasal) and five culture methods (pellet, alginate beads, silk/alginate microcarriers, and decellularized cartilage). Engineered cartilages were treated with pro-inflammatory cytokine IL-1β to promote cartilage degradation; (3) Results: articular chondrocytes have been rejected since they exhibit low cellular doubling with respect to nasal cells, with longer culture time for cell expansion; furthermore, pellet and alginate bead cultures lead to insufficient cartilage matrix production. Decellularized cartilage resulted as good support for degeneration model, but long culture time and high cell amount are required to obtain the adequate scaffold colonization. Here, we proposed, for the first time, the combined use of decellularized cartilage, as aggrecanase substrate, with pellet, alginate beads, or silk/alginate microcarriers, as polymeric scaffolds for chondrocyte cultures. This approach enables the development of suitable models of cartilaginous pathology. The results obtained after cryopreservation also demonstrated that beads and microcarriers are able to preserve chondrocyte functionality and metabolic activity; (4) Conclusions: alginate and silk/alginate-based scaffolds can be easily produced and cryopreserved to obtain a cost-affordable and ready-to-use polymer-based product for the subsequent screening of anti-inflammatory drugs for cartilage diseases.

Human engineered cartilage and decellularized matrix as an alternative to animal osteoarthritis model

Galuzzi M;Perteghella S;Tosca MC;Bari E;Tripodo G;Sorrenti M;Catenacci L;Torre ML
2018-01-01

Abstract

(1) Objective: to obtain a reproducible, robust, well-defined, and cost-affordable in vitro model of human cartilage degeneration, suitable for drug screening; (2) Methods: we proposed 3D models of engineered cartilage, considering two human chondrocyte sources (articular/nasal) and five culture methods (pellet, alginate beads, silk/alginate microcarriers, and decellularized cartilage). Engineered cartilages were treated with pro-inflammatory cytokine IL-1β to promote cartilage degradation; (3) Results: articular chondrocytes have been rejected since they exhibit low cellular doubling with respect to nasal cells, with longer culture time for cell expansion; furthermore, pellet and alginate bead cultures lead to insufficient cartilage matrix production. Decellularized cartilage resulted as good support for degeneration model, but long culture time and high cell amount are required to obtain the adequate scaffold colonization. Here, we proposed, for the first time, the combined use of decellularized cartilage, as aggrecanase substrate, with pellet, alginate beads, or silk/alginate microcarriers, as polymeric scaffolds for chondrocyte cultures. This approach enables the development of suitable models of cartilaginous pathology. The results obtained after cryopreservation also demonstrated that beads and microcarriers are able to preserve chondrocyte functionality and metabolic activity; (4) Conclusions: alginate and silk/alginate-based scaffolds can be easily produced and cryopreserved to obtain a cost-affordable and ready-to-use polymer-based product for the subsequent screening of anti-inflammatory drugs for cartilage diseases.
2018
Cell & Developmental Biology contains resources in biochemistry, molecular biology, biophysics, physiology, and pharmacology that have a specific emphasis on cellular function in eukaryotic systems. Topics of particular importance include receptor biology and signal transduction, regulation of gene expression at the cellular level, developmental genetics, developmental biology and morphogenesis, and cell-environment interactions. Resources concentrated on molecular biochemistry and molecular regulation of gene expression, as well as microscopic or histological analysis of cell or tissue samples are excluded.
Pharmacology & Toxicology includes all aspects of pharmacology, toxicology, and pharmaceutics. Of particular importance are cellular and molecular pharmacology, drug design and metabolism, mechanisms of drug action, drug delivery, natural products, xenobiotics, and clinical therapeutics. Toxicology coverage considers cellular and molecular effects of harmful substances, environmental toxicology, occupational exposure, and clinical toxicology. Drug bulletins, drug updates, and pharmaceutical newsletters are excluded as are resources on pharmaceutical engineering. Medicinal chemistry, or synthesis and chemical analysis of pharmaceuticals are placed in the Chemistry & Analysis category.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
10
7
Alginate; beads; decellularized cartilage matrix; human chondrocytes; microcarrier; osteoarthritis; pellet; silk fibroin
no
12
info:eu-repo/semantics/article
262
Galuzzi, M; Perteghella, S; Antonioli, B; Tosca, Mc; Bari, E; Tripodo, G; Sorrenti, M; Catenacci, L; Mastracci, L; Grillo, F; Marazzi, M; Torre, Ml...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1222752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 25
social impact