Pectin, a natural biopolymer, can be extracted from food waste biomass, adding value to raw materials. Currently, commercial pectin is mostly extracted from citrus peels (85.5%) and apple pomace (14.0%), with a small segment from sugar beet pulp (0.5%). However, driven by high market demand expected to reach 2.12 billion by 2030), alternative agro-industrial waste is gaining attention as potential pectin sources. This review summarizes the recent advances in characterizing pectin from both conventional and emerging food waste sources. The focus is the chemical properties that affect their applications, such as the degree of esterification, the neutral sugars’ composition, the molecular weight, the galacturonic acid content, and technological–functional properties. The review also highlights recent updates in nutraceutical and food applications, considering the potential use of pectin as an encapsulating agent for intestinal targeting, a sustainable biopolymer for food packaging, and a functional and emulsifying agent in low-calorie products. It is clear from the considered literature that further studies are needed concerning the complexity of the pectin structure extracted from emerging food waste raw materials, in order to elucidate their most suitable commercial application.
Towards Valorization of Food-Waste-Derived Pectin: Recent Advances on Their Characterization and Application
Ilaria Frosi;Anna Balduzzi;Giulia Moretto;Raffaella Colombo;Adele Papetti
2023-01-01
Abstract
Pectin, a natural biopolymer, can be extracted from food waste biomass, adding value to raw materials. Currently, commercial pectin is mostly extracted from citrus peels (85.5%) and apple pomace (14.0%), with a small segment from sugar beet pulp (0.5%). However, driven by high market demand expected to reach 2.12 billion by 2030), alternative agro-industrial waste is gaining attention as potential pectin sources. This review summarizes the recent advances in characterizing pectin from both conventional and emerging food waste sources. The focus is the chemical properties that affect their applications, such as the degree of esterification, the neutral sugars’ composition, the molecular weight, the galacturonic acid content, and technological–functional properties. The review also highlights recent updates in nutraceutical and food applications, considering the potential use of pectin as an encapsulating agent for intestinal targeting, a sustainable biopolymer for food packaging, and a functional and emulsifying agent in low-calorie products. It is clear from the considered literature that further studies are needed concerning the complexity of the pectin structure extracted from emerging food waste raw materials, in order to elucidate their most suitable commercial application.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.