Intrabody communication (IBC), is a promising technology that can be utilized for data transmission across the human body. In this study, a galvanic coupled (GC)-based IBC channel has been investigated for implantable configuration both theoretically and experimentally in the frequency range of 0 to 2.5 MHz. Theoretical studies were performed by using finite element method (FEM) based simulation software, called Comsol Multiphysics. A cylindrical human arm was modeled with realistic values. Experimental studies were carried out with chicken breast tissue as a substitute for human tissue. The pseudorandom noise (PN) sequences were transmitted to investigate the correlative channel sounder of tissue model. Results showed that the frequency affects signal propagation through the tissue model. Additionally, it is crucial to cancel common-mode noise in the IBC channel to enhance communication quality.

Channel Characterization of Implantable Intrabody Communication through Experimental Measurements

Savazzi P.;Dell'Acqua F.;Vizziello A.
2024-01-01

Abstract

Intrabody communication (IBC), is a promising technology that can be utilized for data transmission across the human body. In this study, a galvanic coupled (GC)-based IBC channel has been investigated for implantable configuration both theoretically and experimentally in the frequency range of 0 to 2.5 MHz. Theoretical studies were performed by using finite element method (FEM) based simulation software, called Comsol Multiphysics. A cylindrical human arm was modeled with realistic values. Experimental studies were carried out with chicken breast tissue as a substitute for human tissue. The pseudorandom noise (PN) sequences were transmitted to investigate the correlative channel sounder of tissue model. Results showed that the frequency affects signal propagation through the tissue model. Additionally, it is crucial to cancel common-mode noise in the IBC channel to enhance communication quality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1515359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact