This paper deals with the Bayesian analysis of discrete bi-directed graphical mo\-dels. A missing edge in the graph denotes marginal independence between the corresponding variables. The augmented DAG representation of the model is exploited. The augmented model is parameterised in terms of a minimal set of marginal and conditional probability parameters. Compatible priors based on product of Dirichlet Distributions are applied. The prior parameters are specified via a power prior approach. The posterior distributions of the marginal log-linear parameters are obtained using Monte Carlo simulations.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Bayesian Analysis of discrete Bi-directed Graphical Models via Augmented DAG Representation |
Autori: | |
Data di pubblicazione: | 2013 |
Abstract: | This paper deals with the Bayesian analysis of discrete bi-directed graphical mo\-dels. A missing edge in the graph denotes marginal independence between the corresponding variables. The augmented DAG representation of the model is exploited. The augmented model is parameterised in terms of a minimal set of marginal and conditional probability parameters. Compatible priors based on product of Dirichlet Distributions are applied. The prior parameters are specified via a power prior approach. The posterior distributions of the marginal log-linear parameters are obtained using Monte Carlo simulations. |
Handle: | http://hdl.handle.net/11571/746820 |
ISBN: | 9788834325568 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |