Cardiovascular disease has become a major global health care problem in the last decades. To tackle this problem, the use of cardiovascular stents has been considered a promising and effective approach. Numerical simulations to evaluate the in vivo behavior of stents are becoming more and more important to assess potential failures. As the material failure of a stent device has been often associated with fatigue issues, numerical approaches for fatigue life assessment of stents have gained special interest in the engineering community. Numerical fatigue life predictions can be used to modify the design and prevent failure without making and testing numerous physical devices, thus preventing from undesired fatigue failures. We present a numerical fatigue life model for the analysis of cardiovascular balloon-expandable stainless steel stents that can hopefully provide useful information either to be used for product improvement or for clinicians to make life-saving decisions. This model incorporates a two-scale continuum damage mechanics model and the so-called Soderberg fatigue failure criterion. We provide numerical results for both Palmaz-Schatz and Cypher stent designs and demonstrate that a good agreement is found between the numerical and the available experimental results.
Numerical fatigue life assessment of cardiovascular stents: A two-scale plasticity-damage model
AURICCHIO, FERDINANDO;CONTI, MICHELE
2013-01-01
Abstract
Cardiovascular disease has become a major global health care problem in the last decades. To tackle this problem, the use of cardiovascular stents has been considered a promising and effective approach. Numerical simulations to evaluate the in vivo behavior of stents are becoming more and more important to assess potential failures. As the material failure of a stent device has been often associated with fatigue issues, numerical approaches for fatigue life assessment of stents have gained special interest in the engineering community. Numerical fatigue life predictions can be used to modify the design and prevent failure without making and testing numerous physical devices, thus preventing from undesired fatigue failures. We present a numerical fatigue life model for the analysis of cardiovascular balloon-expandable stainless steel stents that can hopefully provide useful information either to be used for product improvement or for clinicians to make life-saving decisions. This model incorporates a two-scale continuum damage mechanics model and the so-called Soderberg fatigue failure criterion. We provide numerical results for both Palmaz-Schatz and Cypher stent designs and demonstrate that a good agreement is found between the numerical and the available experimental results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.